

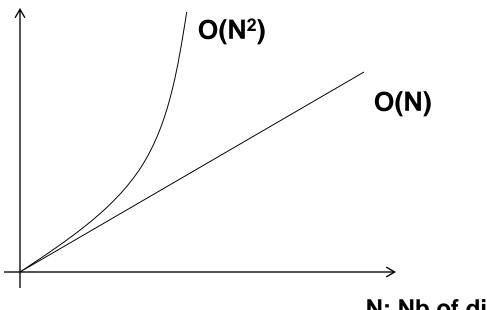
APPLIED MACHINE LEARNING

Principal Component Analysis (PCA)

Part I - Principle

Curse of Dimensionality

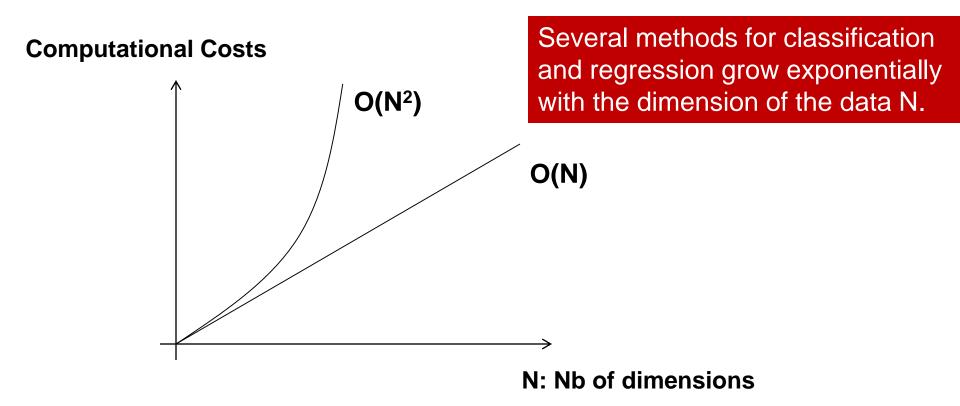
Computational Costs



N: Nb of dimensions

Linear increase is much preferred over exponential increase

Curse of Dimensionality



When the increase is exponential/polynomial \rightarrow reduce dimensionality of data prior to further processing.

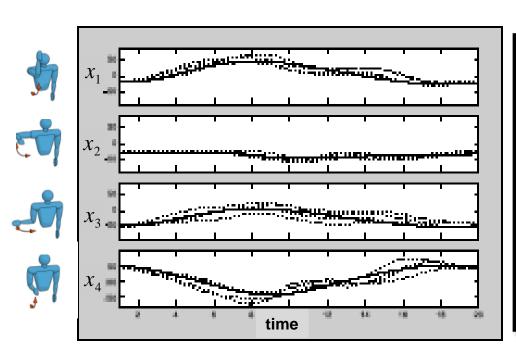
Principal Component Analysis (PCA)

PCA is a method to reduce the dimensionality of dataset.

It does so by *projecting* the dataset onto a <u>lower-dimensional space</u>.

Examples: PCA – dimensionality reduction

Record human motion when writing letters A, B and C



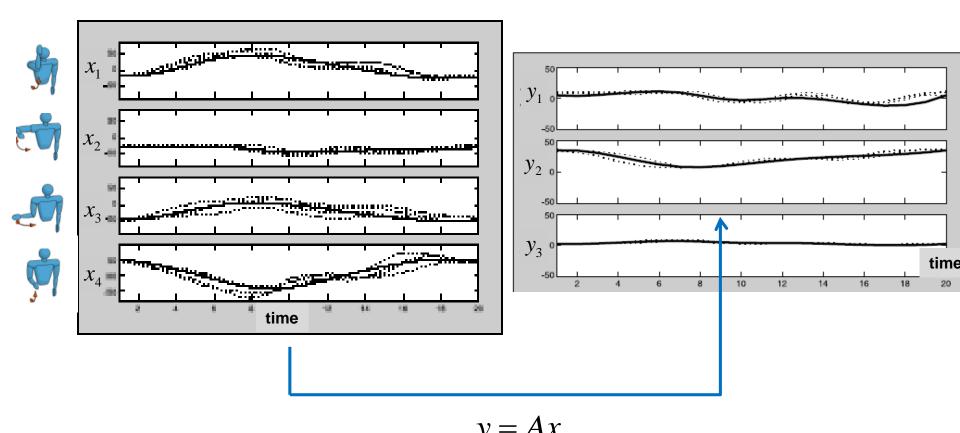
The joint angle trajectories convey redundant information

→ reduce information with PCA

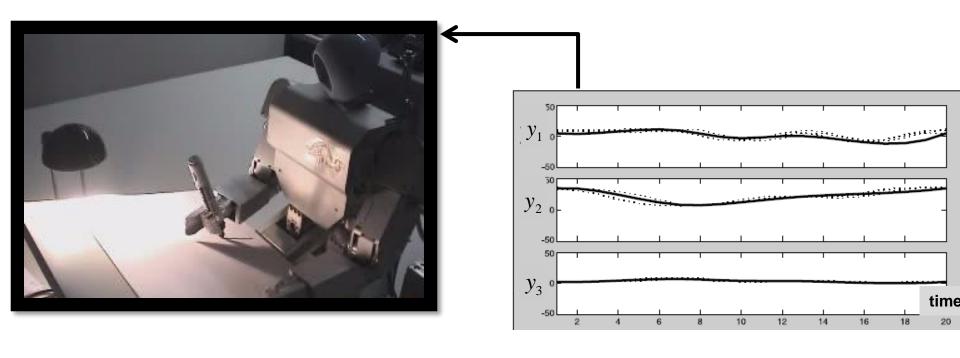
Examples: PCA – dimensionality reduction

 $x \in \mathbb{R}^4$ 4-dimensional state space

Project onto 2-dimensional space $y \in \mathbb{R}^3$ through matrix $A \in \mathbb{R}^{3 \times 4}$



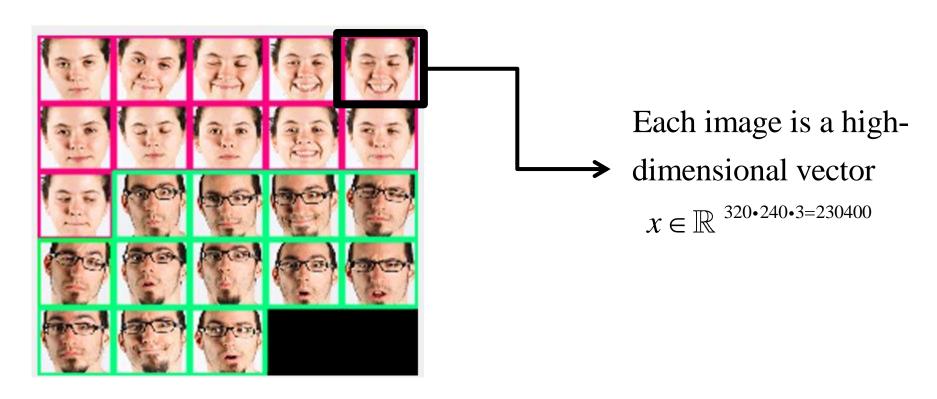
Examples: PCA – dimensionality reduction



Rotate the projected trajectories in y onto the plane where the robot writes. Use inverse kinematics to drive the robot's motion.

Examples: PCA – preprocessing for classification

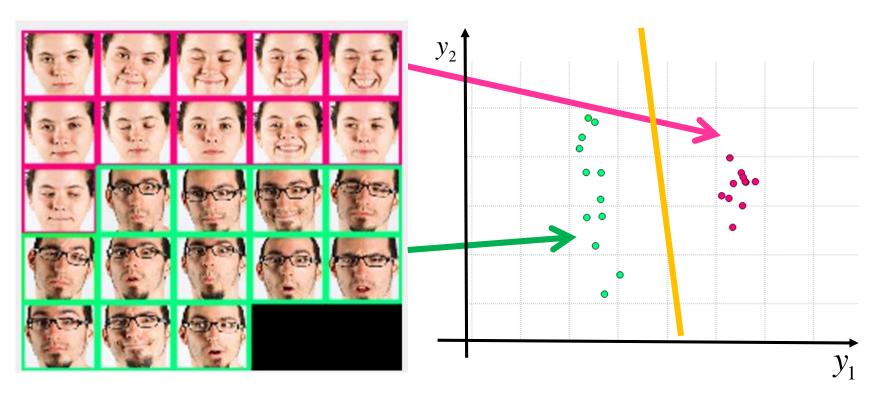
Dataset with samples of two classes (red and green class)



Examples: PCA – preprocessing for classification

Project the images onto a lower dimensional space

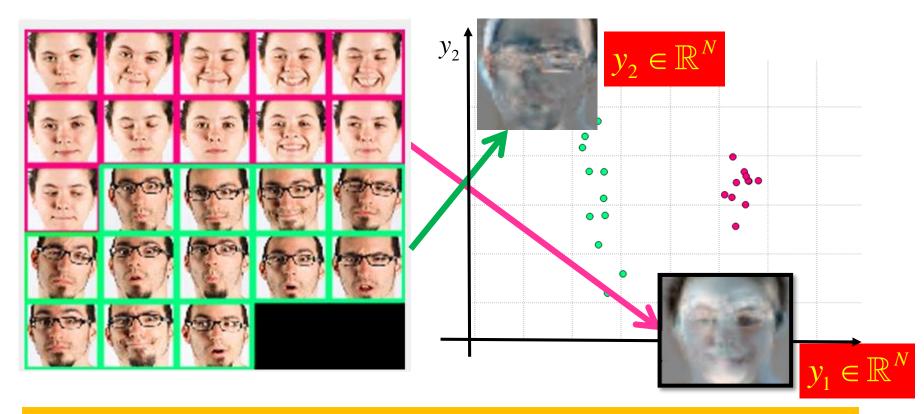
$$y \in \mathbb{R}^2$$
 through matrix $A \in \mathbb{R}^{2 \times 230400}$: $y = Ax$



Separating Line

Examples: PCA – preprocessing for classification

Each projection vector y_1 , y_2 is N – dimensional. It is an image!



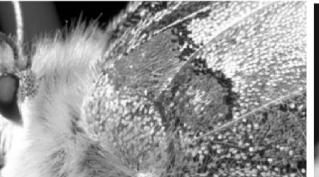
The projection vectors embed features of the original dataset.

Examples: PCA – preprocessing for data compression

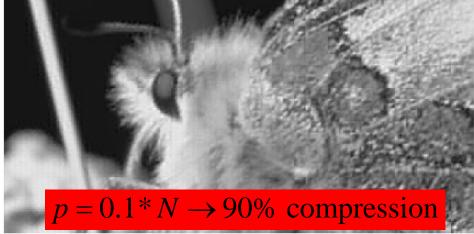
PCA can be used with a single data-point (single image) to reduce the number of dimensions required to represent this data-point.

→ Very useful in processing of high-dimensional images

$$x \in \mathbb{R}^N$$



Projection
$$y = Ax$$
, $y \in \mathbb{R}^P$



Original image

Image compressed

Principal Component Analysis

PCA has two properties:

- 1. It reduces the dimensionality of the data.
- 2. It extracts features in the data.

To achieve 1 & 2, it exploits correlation across datapoints.

PCA can be used as:

- 1. Compression method for ease of data storage and retrieval.
- 2. Pre-processing method before classification to a) reduce computational costs, b) extract features to ease classifier's job.